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Abstract

When the assumption of constant parameters fails, the in-sample fit of a model may be a poor guide to ex-ante forecast
performance. We expound a number of models, methods, and procedures that illustrate the impacts of structural breaks on
forecast accuracy, and evaluate ways of improving forecast performance. We argue that a theory of economic forecasting
which allows for model mis-specification and structural breaks is feasible, and may provide a useful basis for interpreting
and circumventing systematic forecast failure in macroeconomics. The empirical time series of consumers’ expenditure, and
Monte Carlo simulations, illustrate the analysis.  1998 Elsevier Science B.V.
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1. Introduction adjustments), or to explain some of the predictive
failures (or systematic forecast errors) that have

This paper illustrates some of our recent results on occurred in recent economic forecasting.
macroeconomic forecasting in the presence of struc- It is widely recognised that published forecasts are
tural breaks. The approach departs in several ways rarely purely model-based, and adjustments are often
from the traditional theory of economic forecasting made to arrive at a final forecast (see, e.g. Turner,
(see e.g. Klein, 1971), and suggests a need to 1990, for case studies of the impacts of such
reappraise practices and modelling approaches which adjustments on the final forecasts). Thus, published
appear redundant in the classical paradigm. If the economic forecasts reflect in varying degrees the
data generating process truly was stationary (perhaps properties of the models and the skills of the models’
after differencing or cointegration transforms) with proprietors. Moreover, forecasters’ adjustments do
time-invariant parameters, and if we were equipped appear to improve forecast accuracy: see, for exam-
with a forecasting model which coincided with that ple, the work of the ESRC Macroeconomic Model-
process, then it would be hard to justify some ling Bureau, namely Wallis et al. (1986), especially
commonplace macro-econometric forecasting prac- Table 4.8; Wallis et al. (1987), Figs. 4.3 and 4.4; and
tices, such as intercept corrections (or residual Wallis and Whitley (1991).

Nevertheless, as noted in Clements and Hendry
* (1995), confidence in macro-economic forecastingCorresponding author. Tel.: (144) (0) 1203 523055; fax:

(144) (0) 1203 523032. has periodically been punctured by episodes of
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dramatic predictive failure. Recent examples include latest observations are in a tail of the forecast
the poor performance in predicting the consumer distribution, possibly leading to a subjective inter-
boom in the late 1980s, and the depth and duration vention.
of the recession in the 1990s, with noteworthy Our own research focuses on systems of cointe-
antecedents including the under-prediction of post- grated relations representing macro-econometric
war consumption, and the 1974–5 and 1979–81 models, when economies are subject to unantici-
recessions. Wallis (1989) discusses in more detail the pated, large regime shifts, as when the UK left the
forecasting record of the major UK model-based ERM in September 1992. The paper illustrates, by
forecasting teams for the 1974–5 and 1979–81 empirical examples and Monte Carlo simulations, a
recessions. number of the models, methods, and procedures that

An econometric theory of economic forecasting we have analyzed more rigorously elsewhere, to
will only deliver relevant conclusions about empiri- investigate the quantitative impact of structural
cal forecasting if it adequately captures the appro- breaks on systematic forecast errors. We also show
priate aspects of the real world to be forecast. It is that:
not surprising that a theory which posits a cointe-
grated-stationary, time-invariant data generating pro-

‘some methods are more appropriate and/or
cess (DGP), perfectly replicated by a forecasting

robust than others in dealing with different types
model, is not consonant with an empirical track

of... possible changes’: Fildes and Makridakis,
record of large predictive failures. A more realistic

1995, p. 302.
theory that eschews these restrictive assumptions
might better match the historical record.

There are several related lines of research. First, We use as a framework one of the simplest DGPs
Robert Fildes and others have noted anomalies exhibiting a structural break, namely a first-order
between the outcomes of empirical-accuracy studies scalar autoregression. The scalar framework is for
of univariate time-series forecasting methods, and a expositional simplicity only: in the context of econ-
statistical paradigm of theoretical time-series analysis omic forecasting, a multivariate approach that cap-
(see, for example, Box and Jenkins, 1976, and tures behavioural relationships between variables is
compare Fildes and Makridakis, 1995). Essentially, usually essential (see, for example, Hendry and
the forecasting methods that appear to work empiri- Doornik, 1994), especially since economic policy
cally in the forecasting competitions are not those frequently responds to forecast changes. Neverthe-
which would have been predicted by statistical less, we think it is useful to demonstrate that most of
theory, and Fildes and Makridakis (1995) suggest the implications from the associated theory are
that the most serious culprit is the assumption of consistent with the results for scalar processes. The
constancy which underpins that paradigm: this mat- analytical simplicity also brings to the fore the
ches the importance we attribute to structural breaks conceptual issues involved. In each case, the reader
(see, for example, Clements and Hendry, 1996b, is referred to literature where a more detailed
inter alia). treatment is available.

Secondly, the ‘dynamic linear models’ of West The DGP is a simple member of the class of
and Harrison (1989) (see also Pole et al., 1994, for a models recently considered by Andrews (1993), who
wealth of applications) put parameter nonconstancy develops ‘one-shot’ tests of structural change which
centre stage. The difference does not lie in their are designed to test for a single break in a time
allowing the parameters of the observation (measure- series. More generally, the sequential testing pro-
ment) equation to evolve according to a system cedure of Chu et al. (1996) ‘monitors’ for structural
(transition) equation, since the latter becomes the change as new observations accrue, so is potentially
constant-parameter basis. However, these authors relevant in the forecasting context, and Chu et al.
also stress the importance of interventions based on (1996) show that ‘one-shot’ tests cannot be repeated-
an ongoing monitoring of forecast performance, and ly applied as new observations arrive (the size of that
the adequacy of the model is questioned when the procedure would go to one). We shall not be
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concerned with the appropriate distributional theory grated (after a log transform). Vector generalizations
for testing such hypotheses, as the cases of concern are presented in Appendix A when these add insight.
here are when forecast errors are so large that no test When we consider the small-sample properties of
is necessary to discern if a change has occurred. estimators and moments of the forecast-error dis-

We consider approximating a process with a break tributions, we shall use Monte Carlo, and set m 51,1
2by a variety of types of ‘model’, ranging from m 510, t 5(T /2), T5100, s 51, replicating the2 e

predicting the sample mean of the process, to ‘no process 10 000 times.
change’ type forecasts, and include members of the
autoregressive, integrated moving-average (ARIMA)
class of the Box and Jenkins (1976) time-series 3. Forecasting methods
modelling tradition. The estimators considered in-
clude least squares and instrumental variables using We are primarily concerned with short-term fore-
1-step and multi-step (or ‘adaptive forecasting’) casts of y , so consider horizons h of 1 to 4-stepst

criteria; and the forecasting procedures include un- ahead, where the forecast origin is taken to be T. The
modified models as well as intercept corrections. The process in (1) is invariant to specifying the depen-
choice of evaluation criterion is also considered. dent variable as y or Dy so long as y enterst t t21

The plan of the paper is as follows. In Section 2, unrestrictedly. But, beyond 1-step, most conventional
we describe the DGP. This is an autoregressive evaluation criteria are not, and it matters for which
process with a one-off change in the mean only, at transform of the dependent variable forecast errors
an exogenously determined point of time. Section 3 are evaluated (see Clements and Hendry, 1993).
describes the forecasting methods used to analyse The models of y we consider are summarized int

this DGP, and Section 4 introduces the empirical Table 1, and we take each in turn in subsequent
example which illustrates the performance of the sections. Section 11 allows for r ±0, in which case,
methods on an actual data series. Sections 5–11 following the impact of the break at period t, the
present analytical results for the various forecasting process will undergo a period of adjustment to the
methods, as well as the results for the artificial new equilibrium, in contrast to instantaneous adjust-
(simulated) data and the actual empirical data, dem- ment when r 50. The results of the Monte Carlo for
onstrating, in most cases, an acceptable concordance. the models /methods described in Table 1 are pre-
Finally, Section 12 concludes and summarises. sented in Table 2, which reports the mean squared

forecast errors (MSFEs), the squared forecast biases,
and the forecast error variances, for horizons 1–4.
The Monte Carlo distributions of the parameter

2. The data generation process estimates of the various models are shown in Table
3. We refer to these as required below.

The DGP is given by the following scalar first-
order autoregressive process:

Table 1y 5 ry 1 m* 1 e , (1)t t21 t
Forecasting models

Label ARIMA description Constant Commentwhere, for most of the discussion, we set r 50, and
2 MODELSassume that e |IN(0, s ), denoting an independentt e

M – Constant Sample mean predictor1normal distribution with zero mean and constant
2 M ARIMA(1, 0, 0) Yes 1-step minimization2variance s . We allow m* to take on two values: me 1 M ARIMA(1, 0, 0) Yes Dynamic estimation3when t#t, and m when t.t. Thus, the baseline2 M ARIMA(0, 1, 0) Yes Unit root imposed4

DGP is simply white noise (r 50) with a shift in M ARIMA(0, 1, 0) No Unit root imposed5

M ARIMA(0, 1, 1) Yes IMAmean at time t5t 11. Letting y 5Dx where x 5log 6t t t
M ARIMA(0, 1, 1) No IMA7X is a natural interpretation, so that m* is the growtht
M ARIMA(1, 0, 1) Yes ARMA8rate, and the underlying levels process X is inte-t
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Table 2
Measures of forecast accuracy

IC ICM M M M M M M M M2 2 3 3 4 5 6 7 8

MSFEs
1 1.93 5.56 1.93 5.56 2.01 1.98 1.45 1.42 1.44
2 1.95 12.02 1.88 5.38 2.02 1.95 1.47 1.39 1.46
3 2.07 20.75 1.84 5.20 2.06 1.94 1.51 1.39 1.51
4 2.31 31.47 1.86 5.26 2.20 1.99 1.64 1.43 1.62
Squared biases
1 0.04 0.00 0.04 0.00 0.01 0.00 0.03 0.00 0.02
2 0.16 0.00 0.04 0.00 0.03 0.00 0.06 0.00 0.06
3 0.36 0.00 0.05 0.00 0.06 0.00 0.11 0.00 0.13
4 0.59 0.00 0.05 0.00 0.12 0.00 0.18 0.00 0.20
Forecast error variances
1 1.89 5.56 1.89 5.56 2.00 1.98 1.42 1.42 1.42
2 1.79 12.02 1.83 5.38 1.99 1.95 1.40 1.39 1.39
3 1.71 20.75 1.79 5.20 2.00 1.94 1.41 1.39 1.38
4 1.72 31.47 1.81 5.26 2.08 1.99 1.46 1.43 1.41

Table 3
Empirical distributions of model parameter estimates

Percentiles

Model Mean Std. Dev. 1 5 10 25 50 75 90 95 99

M b 0.9338 0.0001 0.91 0.92 0.92 0.93 0.93 0.94 0.95 0.95 0.952

M a 0.4518 0.0034 0.33 0.36 0.38 0.41 0.45 0.49 0.53 0.55 0.612
2M b 0.8721 0.0004 0.82 0.84 0.85 0.86 0.87 0.89 0.90 0.90 0.912
3M b 0.8145 0.0007 0.74 0.77 0.78 0.80 0.82 0.83 0.85 0.86 0.872
4M b 0.7609 0.0011 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.81 0.832

M c 0.9148 0.0001 0.88 0.89 0.90 0.91 0.92 0.92 0.93 0.93 0.943 2

M const. 0.6446 0.0048 0.50 0.54 0.56 0.60 0.64 0.69 0.74 0.76 0.823

M c 0.8956 0.0002 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.92 0.933 3

M const. 0.8380 0.0061 0.67 0.71 0.74 0.78 0.83 0.89 0.94 0.97 1.033

M c 0.8766 0.0002 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.90 0.913 4

M const. 1.0307 0.0071 0.85 0.90 0.92 0.97 1.03 1.09 1.14 1.18 1.233

M const. 0.0907 0.0002 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.11 0.124

M u 20.4195 0.0042 20.54 20.51 20.50 20.46 20.43 20.38 20.33 20.31 20.246

M const. 0.0922 0.0001 0.07 0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.116

M u 20.4040 0.0039 20.53 20.50 20.48 20.45 20.41 0.37 20.32 20.29 20.237

M r 0.9780 0.0000 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.998

M u 20.3884 0.0043 20.51 20.48 20.47 20.43 20.40 20.35 20.30 20.27 20.208

M const. 5.4986 0.0547 4.95 5.11 5.20 5.34 5.50 5.65 5.80 5.88 6.048

4. An empirical example Muellbauer and Murphy (1989); Carruth and Henley
(1990) and Hendry (1994) inter alia. Fig. 1a–d

For our empirical illustration, we use real consum- shows the time series of the level (denoted rcnd5

ers’ expenditure on nondurables and services in the C ), the log level (Lrcnd5c ), the first differencet t

United Kingdom (denoted C ), quarterly (not season- (DLrcnd5Dc 5c 2c ), and the fourth differencet t t t21

ally adjusted) from 1961(1) to 1992(4). There is a or annual growth (D4Lrcnd5D c 5c 2c ). All4 t t t24

long history of predictive failure of this variable empirical estimates and graphs are based on
using econometric models, as witnessed by the GiveWin and PcGive for Windows: see Doornik and
results in Hendry (1974); Davidson et al. (1978); Hendry (1996) and Hendry and Doornik (1996). The
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Fig. 1. Time series of real consumers’ expenditure in the UK.

simulations were performed using the Gauss pro- equation relates the annual changes with an equilib-
gramming language, Aptech Systems, Inc., Washing- rium-correction mechanism (ECM) from the previ-
ton. The four panels are numbered from left to right ous year’s differential between consumption and
and top to bottom. income such that, on a steady-state growth path for

The original series is visually highly seasonal, income, consumption is proportional to income. The
around a strong trend; the log transform is variance estimates over the sample 1962(2)–1982(4) differ
stabilizing so is used below; the quarterly growth from the original estimates, mainly due to problems
series is dominated by the movements between with the data revisions implemented in the early
seasons, which are of the order of 15% switches and 1990s for the mid-1970s data: see Hendry (1994) for
may reflect seasonal unit roots. The annual growth a discussion. Davidson et al. (1978) called the level
has usually been positive, with only a few falls. We feedback an error-correction mechanism, but as will
focus on D c as the variable y (for r ±0) in (1), be seen, this is a misnomer. Specifically, we ob-4 t t

and presume that a possible change in the underlying tained:
growth rate occurred around 1980. Over the whole

∧sample, the mean and standard deviation of D c are4 t D c 50.37 D i 10.15 D i 20.11 (c 2 i)4 t 4 t 4 t21 t24
(0.04) (0.04) (0.02)almost equal at 2.3% and 2.2% respectively.

To show the nature of the predictive failure, we
20.13 D p , (2)consider 1-step ex post forecasts for the equation in 4 t

(0.02)
Davidson et al. (1978) (known as DHSY), which is
close to the equation in the Treasury model during 2 ˆR 5 0.89 s 5 0.96% F (5, 74) 5 0.96e arthe early 1980s. Letting i denote real personalt

disposable income and p its implicit deflator, the F (4, 71) 5 1.19,t arch
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2
x (2) 5 3.23 F (8, 70) 5 1.29 F (1, 78) 5 3.67 95% confidence bands around the forecasts. Thend het re

forecast and sample regressions have distinctly dif-J 5 0.55 SC 5 2 9.12.
ferent slopes and the post-sample residuals greatly

2 ˆR is the squared multiple correlation coefficient, s exceed the in-sample ones. Many forecasts lie out-e

is the residual standard deviation expressed as a side their one-off confidence intervals, and the Chow
percentage of C , SC is the Schwarz criterion; and (1964) constancy test over 1983(1)–1992(3) yieldst

the diagnostic tests are of the form F (k, T2l) which F(40, 79)52.90** which rejects at the 1% level,j

denotes an F-test against the alternative hypothesis j consistent with the low correlation between outturns
thfor: 5 -order residual serial correlation (F : see and forecasts over the later period in 2a.ar

thGodfrey, 1978), 4 -order residual autoregressive Considerable effort has been devoted to under-
conditional heteroscedasticity (F : see Engle, standing the causes of this predictive failure, andarch

1982), heteroscedasticity (F : see White, 1980); the there are many potential explanations ranging fromhet

RESET test (F : see Ramsey, 1969); the joint inaccurate data, inappropriate economic analysis, anre

parameter constancy tests in Hansen (1992) (J), and invalid model class, bad methodology, structural
2a chi-square test for normality (x (2): see Doornik change (particularly the financial deregulation of thend

and Hansen, 1994). All the in-sample tests are mid-1980s and possibly demographic change), and
acceptable (* and ** would denote significance at omitted variables (mainly wealth related measures):
the 5% and 1% levels respectively), but Fig. 2a–d see the excellent review in Muellbauer (1994). The
shows the fitted, actuals and forecast values, their main point of the above illustration is to demonstrate
cross plot with separate regression lines pre and post that a change of some form did occur, and that
1982; the residuals and forecast errors scaled by the previously successful equations did not forecast
equation standard error; and the forecasts with 1-step through that change; partial statistical explanations

Fig. 2. Graphical statistics for the DHSY model.
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will emerge as we proceed. Hendry and Doornik atypical, and if in the future the process returns to its
(1997) present theoretical analyses of several of the long-run average. Hence, differencing offers poten-
other putative causes, and demonstrate the central tial advantages for short-term forecasting when the
role of deterministic shifts. present pattern persists for a number of quarters, but

may yield unreliable forecasts over longer horizons.
As an extreme example, suppose the shift in mean to
m at period t 11 is reversed in period t 12. Multi-5. The sample mean as a predictor 2

step forecasts conditional on period t 11 will fare
badly compared to using the sample mean. TheThe forecast function for M is simply the sample1

sample mean is robust to irregular or outlier observa-mean. For r 50 and t 5(T /2) the population value
1 tions at the forecast origin, whereas differencing]of the sample mean is m 5 (m 1m ). The form ofp 1 22

quickly incorporates change, and gains if that changethis predictor is that forecasts are not conditional on
persists. These are extremely simple examples ofthe value(s) of the process around the forecast origin,
forecasting methods but serve to illustrate that whenand forecasts are badly biased when the recent
constancy fails to hold, quite different approaches tobehaviour of the process is very different from the
forecasting may be called for, depending upon thehistory on which m is based. Ignoring the impreci-p

expected nature of the nonconstancy. Fildes andsion in estimating m, the forecast error variance is
2 Makridakis (1995), p. 302, remark upon more elabo-only s , the minimum obtainable using y 5m .e T 1h 2

rate models, and changes in trend rather than mean,But on MSFE comparisons (the sum of the squared
but the upshot of their argument is similar. Forbias and forecast-error variance), this strategy fares
example, they suggest that single exponentialpoorly:
smoothing or damped trend smoothing may be more

d1 m robust to a range of changes in trend than ARIMA] ]bias 5 E[y 2 m ] 5 m 2 (m 1 m ) 5T 1h p 2 1 22 2 models.
While differencing may reduce bias, since thewhere d 5m 2m can be made arbitrarily largem 2 1

process is stochastic, it will not repeat the previousrelative to s . When r ±0, the bias is scaled up bye
21 period (barring an event with probability zero),(12r) and the forecast-error standard deviation by

2 which has implications for the forecast error variance1/œ(12r ), since:
attached to this type of predictor. Since the structural

m* break (mean-shift) has occurred prior to the forecast]]y 5 1 u where u 5 ru 1 et t t t21 t(1 2 r) origin (at period (T /2) compared to period T ),
differencing results in largely unbiased forecasts2 2 2so that s 5s (12r ), yielding:u e when the constant is not estimated. This is because:

22 ds E[y ] 5 E[y ] 5 m*,me T 1h uT T]]] ]]]MSFE ( y: h) 5 1 .1 2 2(1 2 r ) 4(1 2 r)
and:

E[y ] 5 m*.T 1h6. Differencing
However, the cost in forecast error variance arises

As a polar case, consider M . Let y denote the because the predictor projects y , which is m 1e , so5 j ui T 2 T

forecast function for the model under consideration, there is an ‘error’ in the present. Because the future
where i is the forecast origin (on which the forecast value of the process is m 1e , and since e and2 T 1h T

is conditioned), and j is the period being forecast. e are independent for all h, the forecast errorT 1h

Here y 5y , so that the history of the process, variance is twice the minimum. Formally, whenT 1h uT t

other than the value at the forecast origin, is irrele- r 50 the unconditional variance component is:
vant. ‘Complete’ conditioning on the origin would 2E[(m* 1 e 2 y ) ] 5T 1h Tappear to be a good idea when the future is exactly

2 2 2 2like the present, but will be costly if the present is s 1 (m*) 1 E[y ] 2 2m*E[y ] 5 2s .e T T e
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When a constant is included (M ), then ignoring where the 1-step forecasts are shown in Fig. 3a–d.4

parameter estimation uncertainty, the forecast func- There is no evidence of predictive failure, the two
tion is: regressions (in and out of sample) have nearly equal

slopes and the post-sample residuals are smaller than
21y 5 y 1 hT d ,T 1h uT T m ˆthe in-sample. Now s 51.47%, so the residualu

ˆvariance exceeds that based on s by more thanewith forecast bias:
100%. However, there is evidence of residual auto-

21 correlation at 4 lags, as F (5, 74)55.04, andbias 5 E[y 2 y ] 5 2 hT d , arT 1h T 1h uT m
2nonnormality, as x (2)56.57. To the extent that thend

so that the bias is small but increases with the predictive failure in (DHSY) is due to a shift in the
forecast horizon. Again, in large samples, the fore- equilibrium mean, differencing offsets that and al-

2cast error variance is 2s (ignoring the impact of lows nearly unbiased forecasts with doubled errore

estimating the constant term). variance, as anticipated from the analysis for M .5
The empirical illustration of these two cases is a

revealing confirmation of the analysis: differencing
corresponds to estimating:

7. AR(1) model: 1-step estimation
D c 5 a 1 D c 1 u (3)4 t 4 t21 t

Consider now M , the AR(1) with a constant term,2where a 50 for M . We fit this by nonlinear least5
estimated by OLS. Thus the model is:squares to maintain D c as the dependent variable,4 t

ˆimposing the coefficient of D c at unity. Since a4 t21
25is tiny (10 ), we report only the results for a 50 y 5 a 1 by 1 v (4)t t21 t

Fig. 3. Graphical statistics for the differenced model.
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and for the break outlined above, 0,b ,1 with noring the contributions from parameter estimation)
m ,(a /12b ),m . Also, b →1 as d →` where a are given by:1 2 m

and b are the plims of the drift and slope parameters 2E[( y 2 y 2 E[y 2 y ]) ]T 1h T 1h uT T 1h T 1h uTof an AR(1) model when the DGP is given by (1).
h21The forecast function is (ignoring parameter estima-

i h
5 E e 2 a O b 1 b yFH ST 1h Ttion uncertainty):

i50

h21 2h21
a i hi h 2 E a O b 1 b yF GDJ G]]y 5 a O b 1 b y → as h → `. TT 1h uT T 1 2 b i50i50

h 2 2 2h
5 E[(e 2 b e ) ] 5 s (1 1 b ).1 1 T 1h t eLet m 5a /(12b ). Then m is the long-run mean

of the process from the historical data, which in- The forecast error variance is always less than from
corporates the two regimes. The long-run mean of differencing (since b ,1) and declines towards the

1 2the process after t5t is m , and m ,m , so the minimum attainable as h increases (s ): that this2 2 e

forecasts are biased for large h. Incorporating histori- does not happen in the Monte Carlo is due to
cal information on the long-run mean of the process parameter estimation effects.
leads to biased predictions as the earlier information Empirically, for UK consumption we obtain:
is outdated. ∧

Write (4) as: D c 50.0052 10.74D c ,4 t 4 t21
(0.0017) (0.07)

a
2]]Dy 5 (b 2 1) y 2 1 v (5)S Dt t21 t ˆR 5 0.54 s 5 1.38% F (4, 77) 5 3.44**1 2 b v ar

F (4, 73) 5 0.40, (6)archand consider forecasting without the term ( y 2t21
1

m ): this delivers the differenced model M . Thus, 25 x (2) 5 5.60 F (2, 78) 5 1.77 F (1, 80) 5 0.06nd het rethe comparison between M and M is the scalar2 5
J 5 0.50 SC 5 2 8.48.analogue of the comparison in Clements and Hendry

(1996b) between the vector equilibrium-correction The fit is little better than (3), as Fig. 4a–d confirms,
model (VECM) and the vector autoregression in the whereas the forecasts are poorer in terms of tracking,
differences of the variables (DVAR), which neglects though never significantly bad.
the long-run means of the cointegrated processes.

In terms of the scalar example, from the Monte
Carlo, a, b are estimated as: 8. Intercept corrections

ŷ 50.452 10.934y , Intercept corrections refer to the practice oft t21
[0.0034] [0.0001] specifying nonzero values for a model’s error terms

over the forecast period. Hendry and Clementswhere the coefficients are the Monte Carlo estimates
(1994) provide a general theory of the role of(averages over replications), and the figures in brac-
intercept corrections in macro-econometric forecast-kets are the standard deviations of the estimates
ing and Clements and Hendry (1996a), (1996b),across replications. Thus:
focus on their role in offsetting regime shifts. If the

1bias 5 E[y 2 y ] 5 m 2 m 5 10 2 6.82 model’s (in-sample) error is an innovation on theT 1h T 1h uT 2

information set, then in the absence of structural5 3.18 for large h.
breaks over the future, or of other extraneous factors,

The Monte Carlo estimates of the (squared) biases it is natural to set the future values of the equations’
for h51, . . . ,4, are shown in Table 2, confirming error terms to zero.
that the forecasts are biased, while those from M are Here, we consider the simplest form of intercept5

unbiased. correction, whereby the forecaster reacts to perceived
The forecast error variances (asymptotically, ig- recent predictive failure by adding in the equation
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Fig. 4. Graphical statistics for the AR(1) model, M .2

error in predicting T, the forecast origin. For M , the2 a 1 E[j ]T
]]]¯AR(1) model, the period T model error is, ignoring E[y 2 y ] 5 m 2 5 0, for large h,T 1h T 1h uT 2 1 2 b

estimation uncertainty:

as E[j ]5m (12b )2a from (7). When there is noT 2
j 5 y 2 y 5 m 1 e 2 (a 1 by )T T T uT21 2 T T21 structural break, m 5m and a 5m , b 50, so that2 1 2

E[j ]5E[e ]50, and hence intercept correcting does5 m (1 2 b ) 2 a 1 (1 2 bL)e , (7) t T2 T
not induce a bias.

However, intercept corrections always result in anwhere L is the lag operator, i.e. Le 5e . When thet t21
inflated forecast error variance. In our example, foradjustment is held constant over the forecast period,
large h:j is added in at each step ahead:t

2¯ ¯V[y 2 y ] 5 E[( y 2 y ) ]T 1h T 1h uT T 1h T 1h uT¯ ¯y 5 a 1 by 1 j , (8)T 1h uT T 1h21uT T

2e (1 2 bL)T
]]]]5 E e 2FS D G¯where y 5y , so that: T 1hT uT T 1 2 b

2h21 2(1 2 b 1 b )2i ]]]]5 s (10)ȳ 5 y 1 j O b e 2T 1h uT T 1h uT T (1 2 b )i50

h21
constituting a doubling when there is no mean shift.h

5 (a 1 j ) O b 1 b y . (9)T i T Moreover, for b close to unity, V[?] gets very large.i50

Intuitively, as b →1, the stochastic component of j ,T

The bias from using (9) as a predictor is: namely j 2E[j ]→De , and this is being multip-T T T
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h21 ilied by an only-just convergent sum o b . construction, but the forecasts track the outcomes,i50

Evaluating (10) for 1-step forecasts gives: albeit with a much larger variance. Of course, the
more pertinent issue is the effect of intercept correct-

2¯V[y 2 y ] 5 2(1 1 b 1 b ); ing on (2), and as Fig. 6 shows, the effect isT 11 T 11uT

dramatic: unbiased forecasts do indeed result, again
see the Monte Carlo estimates in Table 2 where the with considerable volatility due to incorporating the

ICerror variance for M (the intercept-corrected model whole of the previous error as well as the impact of2

M ) is 5.56 compared to 1.89 for M , or 1.98 for M , any shift.2 2 5

the differenced model.
In summary, in the absence of a structural break,

the differenced model and intercept correcting (IC)
9. ARMA predictorsstrategies both yield unbiased forecasts and doubled

forecast error variances (relative to y 5m ).T 1h uT 2
The mean shift induces negative autocorrelation inHowever, these two forecasting methods are dif-

the estimated residual of M (see the distribution of2ferentially susceptible to structural breaks. For the
the Durbin and Watson, 1950, DW statistic in theDGP we consider here, the IC strategy fares the
Monte Carlo, Table 4). To see why this occurs, recallworst in terms of forecast error variance, but this is
that for a large enough value of d the optimal valuemnot necessarily the case generally (see the empirical
of the AR(1) parameter is unity when r 50, so thatexample in Clements and Hendry, 1996b).
differencing (1) yields:For consumers’ expenditure, intercept correcting

the 1-step forecasts yields the outcomes shown in
Fig. 5: the in-sample behaviour is identical by Dy 5 d D 1 De , (11)t m t t

Fig. 5. Graphical statistics for the intercept-corrected AR(1) model.
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Fig. 6. Graphical statistics for the intercept-corrected DHSY model.

Table 4
Empirical distributions of DW from OLS

Percentiles

Mean Std. Dev. 1 5 10 25 50 75 90 95 99

2.5980 0.0200 2.25 2.36 2.41 2.50 2.60 2.70 2.78 2.83 2.90

where D is an impulse dummy which is unity when root in M is close to unity. In M and M (IMA(1,t 8 6 7

1) models with and without constant terms), the MAt5t 11, and zero otherwise. If the break is not
coefficient is estimated at 20.42 and 20.40, respec-modelled, then we have the IMA(1, 1) representation
tively, and in M (ARMA(1, 1)) at 20.39. A neg-of the process: 8

lected negative MA and near-unit root are conditions
Dy 5 k 1 j 1uj . (12)t t t21 under which the results in Clements and Hendry

(1996c) suggest that multi-step estimation of purelyAs d →0, u →21, so the limit is an over-differ-m

autoregressive models, such as M , should yieldenced process, with a strictly noninvertible MA 2

gains. We elaborate on this line of reasoning incomponent. For d .0, the role of differencing is tom

Section 10.convert the step-change in the mean of the white-
The optimal forecast function for the IMA(1, 1) is:noise process y into a blip in the estimated residualt

of the IMA representation. Fig. 7 shows time series ˆ ˆy 5 y 1 uj ,T 1h uT T Tplots for a single realization of y from the Montet
ˆ ˆ ˆCarlo and the estimated residual (j ) from M . where u and j denote estimates. The bias of thist 7 T

For the size of break in the Monte Carlo, the AR predictor is zero:
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Fig. 7. Time series of a single realization of y with the estimated errors from M .t 7

ˆ ˆE[y 2 y ] 5 m 2 m 2 uE[j ] 5 0. (effectively assuming that the structural breakT 1h T 1h uT 2 2 T

occurred sufficiently far back to be ignored). Then:
ˆsince E[j ]50 except at t5t 11, where it picks upt

2ˆ ˆthe effect of the mean shift. The forecast error 2u (u 1 1)2 2 ]]]]E[( y 2 y ) ] 5 s 2 1 2u 1S Dˆ T 1h T uT 1h e 2variance is approximately (ignoring the fact that u is ˆ1 2 u
a random variable): 22s e

]]5 ,2 2ˆ ˆE[( y 2 y ) ] 5 E[(e 2 e 2 uj ) ] ˆT 1h T 1h uT T 1h T T 1 2 u
2 22 yielding a forecast error variance less than that forˆ ˆ ˆ ˆ. 2s 1 u E[j ] 1 2uE[j e ].e T T T

the differenced-model (for u ,0). This result is
We have: unsurprising since the IMA model fits the data better

than the ARIMA(0, 1, 0) (due to its negative serialˆ ˆ ˆ ˆ ˆj 5 y 2 y 2 uj 5 De 2 ujT T T21 T21 T T21 correlation). In terms of bias, the IMA (M ) forecasts7
ˆ ˆ ˆ are similar to the differenced-model (M ) forecasts5 De 2 u(De 2 uj ), (13) 5T T21 T22

since the expected value of the MA term in the
2ˆso that E[j e ].s . Also, from (13): forecast function is zero.T T e

As before, the empirical results conform to theseˆ ˆ ˆ ˆj 5 e 2 (1 1 u )e 1 u(1 1 u )e 2 ? ? ?T T T21 T22 analytic predictions. First, as there is no first-order
residual autocorrelation in (6), but there is fourth, weso:
estimated an ARMA(1, 4) where only the lag-four

` ˆ2(u 1 1)2 2i2 2 2 error is included. This yielded the estimates in (14),ˆ ˆ ˆ ]]]E[j ] 5 s 1 1 (1 1 u ) O u . sF GT e e 2ˆ1 2 ui50 and the graphical outcomes in Fig. 8:
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Fig. 8. Graphical statistics for the ARMA(1, 4) model.

ments and Hendry (1996c). Then, however accu-∧
hˆ ˆ ˆD c 50.0029 10.83D c 20.58j , rately c estimates c, (c ) need not be close to c . In4 t 4 t21 t24 h

(0.0014) (0.06) (0.09)
the case we consider, this discrepancy arises because

2 of the mean shift inducing a negative MA term, whichˆR 5 0.66 s 5 1.22% F (4, 73) 5 0.53j ar is omitted from M . Thus, when k 50 in (12) and no2
F (4, 69) 5 0.44, (14) intercept is estimated:arch

h h21E[y uy ] 5 r y 1 r u E[j uy ]2 T 1h T T T Tx (2) 5 0.93 F (4, 72) 5 3.20** SC 5 2 8.69.nd het
h21 h21

5 r (r 1ul)y 5 r fy ,T T
The forecasts remain poor, although the residual

where E[j uy ]5ly . Consequently, c 5(r 1ul),autocorrelation has vanished. This is in contrast to T T T
h21 hbut c 5r c ±c unless u 50. We can handleimposing a zero intercept and unit root on D c h4 t21

k ±0 with a change of notation, and for models ofˆ(when s51.26% and SC528.71): see Fig. 9.
arbitrary lag order, this analysis is applicable to their
first-order companion forms. For example, for k ±0
write y 5( y : 1)9 with v 5j 1uj where j 5(j :t t t t t21 t t10. AR(1) model—multi-step estimation
0)9, so that:

Multi-step estimation may improve forecast ac- r k u 0
r 5 and u 5F G F Gcuracy whenever the parameter defined by projection 0 1 0 1

of y on to y is not h times the parameter definedT 1h T then:by the 1-step projection, that is, when E[y uy ]5T 11 t
h

cy say, but E[y uy ]5c y ±c y : see Cle- y 5 ry 1 j 1uj .T T 1h T h T T t t21 t t21
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Fig. 9. Graphical statistics for the IMA(1, 4) model.

Clements and Hendry (1996c) consider the role of so that r →1 as h increases (when u .21). Noticehhj
h hthat c ;(r ) →0 in h when ur u,1.multi-step estimation in such a model both when h1j h1j

In the Monte Carlo, multi-step estimation inflatesr 51 and ur u,1. For the stationary case with k 50,
the forecast error variances over 1-step estimation,they show that the optimal value of c in the AR(1)h

but generates smaller biases and an overall gain inmodel h-step forecast function (in the sense of
terms of MSFE (compare the column headed Mminimizing h-step ahead MSFE) is: 3

with M in Table 2). For r 51, the limiting dis-2
ˆ ˆy 5 c y , tribution of c is closely related to that of c (seeT 1h uT h T h

Clements and Hendry, 1996c), and predicts that
where: biases remain and do not change much with h.

However, different estimators are required for each(h21)
c ; r 5 r 3 r .h hhj h1j linear transform of the dependent variable (e.g. D c4 t

versus D D c even though D D c ;D c 2D c ).1 4 t 1 4 t 1 t 1 t24r is optimal for 1-step ahead forecast errors, and ish1j Here we compare 4-step estimation for 4-periodgiven by:
ahead forecasts with fourth powering of the 1-step

2 form. The AR(1) given by (6) provides 4-step aheadu(1 2 r )
]]]]r 5 r 1 , forecasts of D c by powering up. Direct estimationh1j 2 4 t1 1u 1 2ru

of the 4-step representation yields:
h hfrom which it is apparent that c 5c ;(r ) ∧h h1j

D c 5 0.017 1 0.14D c , (15)requires that u 50. When r 51: 4 t 4 t24
(0.0033) (0.11)

1 / h 2 ˆr 5 (r ) R 5 0.02 s 5 2.08% J 5 1.82 SC 5 2 7.66.hhj h1j ß
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2 ˆThis is for the annual growth in c one year ahead, R 5 0.95 s 5 1.36% SC 5 2 8.55.t ß

and reveals almost no forecastability from the previ-
ous year’s annual growth. Few tests are valid due to Fig. 11 shows the forecasts with conventionally-
the residual autocorrelation, which also biases the calculated 95% confidence intervals.
conventional standard errors. The fourth power of This overestimates the uncertainty from the
0.74 (the slope coefficient in (6)) is 0.30 and policy-makers’ perspective, since tax changes are

˜imposing that yields s 52.09%: Fig. 10 shows the known to them, so to establish a ‘minimum’ innova-ß

comparison of the residuals and forecasts. There is tion variance, we added indicator variables for the
little to choose between the two estimators, but the main changes in consumers’ taxes (purchase tax in
powered-up forecasts are somewhat better here with 1968(1) /(2); VAT in 1973(1) /(2) and 1979(2) /(3)),
MSFEs of 2.4% versus 2.75%. In absolute terms, and interventions in 1974(1), 1977(4) /1978(1) and

˜neither would be of use for economic policy, with 1980(1) for the remaining outliers. Then s 50.93%ß

forecast errors of 4% occurring regularly. and Fig. 12 shows the graphical statistics in terms of
The situation is more sanguine for quarterly D D c , with 95% confidence bands rather than bars.1 4 t

growth one-year ahead. Using the identity noted There is only one significant forecast error, and
above, D c ;D D c 1D c and as D D c can be the MSFE is just under 0.9%. However, it is hard to1 t 1 4 t 1 t24 1 4 t

1
]explained in part as 2 D D c , we have (unre- decide what the 1-step comparative method would1 4 t242

stricted estimates are 0.98 (0.03) and 20.43 (0.10)): be, since models of D D c primarily depend on1 4 t

D D c . Finally, Fig. 13 shows the forecasts from1 4 t24∧
1
]D c 5 D c 2 D D c , 4–7 steps ahead for D c based on the ‘models’:1 T 14 1 T 1 4 T 1 t2

Fig. 10. Graphical statistics for 4-step ahead forecasts of annual growth.



M.P. Clements, D.F. Hendry / International Journal of Forecasting 14 (1998) 111 –131 127

Fig. 11. 4-step ahead forecasts of quarterly growth.

T 140∧ ∧12 2ˆˆ ]D c 5 a 1 D c 2 0.5D D c x (40) 5 O (D c 2 D c )1 t 4 1 t24 1 4 t24 i 2 1 t 1 t
ŝ t5T 11i∧

2ˆD c 5 a 1 D c 2 0.25(D c ) ˆ5 (40 /s ) 3 MSFE.1 t 5 1 t28 4 t25 i

∧
Thus, in every case, the average forecast errors areˆD c 5 a 1 D c 2 0.33(D c )1 t 6 1 t28 4 t25
about half the in-sample.

∧
ˆD c 5 a 1 D c 2 0.33(D c ),1 t 7 1 t28 4 t27

where only the a are estimated. There is not a greati 11. Disequilibrium adjustment
deal of deterioration as the horizon increases, the
sample and forecast statistics being: When the process is (1) but with r ±0, that is:

2 y 5 ry 1 m* 1 e , (16)ˆ ˆi 100 a 100 SE 100 s x (40)i i i t t21 t

4 20.01 0.15 1.36 17.9
then there will be a period of adjustment when the5 0.50 0.17 1.52 20.2
mean of y alters from m /(12r) to m /(12r), since:1 26 0.64 0.17 1.47 23.9

7 0.64 0.17 1.47 22.6
t2t 21 t21 t21

s s ty 5 m O r 1 m O r 1O r e 1 r y ,t 2 s 1 t2s 0
s5t2twhere: s50 s50
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Fig. 12. Graphical statistics for 4-step ahead forecasts of quarterly changes in annual growth.

2 2for t.t 11. When y |D(m /(12r), s /(12r )), stationary outcome. However, when the long-run0 1 e

then for t#t, E[y ]5m /(12r). For t.t, mean changes to m /(12r), the DGP becomes:t 1 2

E[y ]→m /(12r) as t→`. The speed of adjustmentt 2
m2depends on how close r is to zero: at r 50 the ]]Dy 5 (r 2 1) y 2 1 v . (18)S Dt t21 t1 2 radjustment is instantaneous. If, as in the Monte

Carlo, t 5T /2 and T is relatively large, then fore-
whereas the model in use remains:

casting from an origin of T will yield similar results
mto when r 50. Since E[y ].m , the latest observa- 1t 2 ]]Dy 5 (r 2 1) y 2 1 vS Dt t21 ttion (nearly) fully embodies the new equilibrium 1 2 r

mean so the differenced-model M forecasts will be m5 2
]]5 (r 2 1) y 2 1 v 2 d . (19)S Dapproximately unbiased. t21 t m1 2 r

Reconsider (1) pre-break, written as:
When d .0, as in Fig. 7, the ECM computed in (17)m

m1 will be persistently positive, so will continually]]Dy 5 (r 2 1) y 2 1 v . (17)S Dt t21 t1 2 r predict negative Dy . Thus, as noted in Section 4,t1j

this is the opposite of error-correction, and corrects
The disequilibrium:

only within equilibria and not between. We suspect
that this underlies the failure of DHSY, namely am1

]]y 2 5 y 2 E[y ],t21 t21 t21 shift in the desired long-run propensity to spend1 2 r
following financial deregulation that lifted a ration-

helps correct the current growth Dy , and ensures a ing constraint on borrowing for many consumers,t
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enabling them to finance a higher ratio of expendi- Appendix A
ture to income. Rationing ceased to bite around
1989, and the rise in interest rates, reduction of tax
deductibility of interest payments, and the fall in Vector representations
house prices (the main collateral for the debt)
together forced a return to previous levels of ex- M2

penditure to income. Such mean shifts are consistent
with the success of the intercept-correction strategy Clements and Hendry (1996b) consider a vector of
above. n variables, denoted by w , and represented by at

first-order VAR which includes a constant and a linear
deterministic trend (omitted here):

12. Conclusions w 5 k 1 Gw 1 n , (20)t t21 t

where n |IN (0, V ). The system is assumed to beThe main aim of the paper was to expound a t n

integrated, and to satisfy r,n cointegration relationsnumber of recent results on forecasting after a shift
such that (see, for example, Johansen, 1988):in the mean of a stochastic process. When economic

systems are subject to structural breaks, conventional
G 5 I 1 ab9,nmodels need not forecast satisfactorily. The empiri-

cal example of consumers’ expenditure reveals that where a and b are n3r matrices of rank r. Then
some shift in the econometric relation occurred, and (20) can be reparameterized as a VEqCM:
that the various strategies considered helped circum-
vent the implicit shift. Analysis suggests that dif- Dw 5 k 1 ab9w 1 n , (21)t t21 t
ferencing can mitigate the effects of changes in

which we write as:equilibrium means, and this was shown above em-
pirically, and in a Monte Carlo. Alternatively, inter-

Dw 5 g 1 a(b9w 2 m) 1 n , (22)t t21 tcept corrections can offset the mean shift, albeit at
the cost of an increased variance. However, models so the cointegration vectors are expressed as devia-
that do neither performed badly analytically and tions about their expectations, and the intercept is the
empirically. There was little benefit to multi-step net rate of growth.
estimation over repeated backward solution of 1-step Clements and Hendry (1996b) compare h-step
estimates. forecasts from the correctly-specified model (22)

Thus, in-sample fit may be a poor guide to ex-ante with those from the DVAR, defined by setting DwT 1h
forecast performance when the assumption of con- equal to the population growth rate g :
stancy fails, so alternative strategies may be called

˜for. A theory of forecasting allowing for structural Dw 5 g, (23)T 1h

breaks when the model is not the mechanism is
so h-step ahead forecasts of the level of the processfeasible, and on the limited evidence of the empirical
are:example considered here, provides a useful basis for

interpreting and circumventing systematic predictive ˜ ˜w 5 g 1 w 5 jg 1 wT 1j T 1j21 T
failure in economics.

for j 5 1, . . . , h. (24)

They show that when neither m nor g are subject to
Acknowledgements a structural break, the DVAR yields unbiased forecasts

as well as the VEqCM. Moreover, when m changes
Financial support from the UK Economic and before the forecast origin, the forecasts from the

Social Research Council under grant L116251015 is DVAR remain unbiased, but this is not true of VEqCM
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M More generally, for a 1-step forecast with origin5

T 1j:
Consider the cointegrated vector process in (20) * ˜ *E[w 2 w ] 5 2 a(b9w 2 m 2 d )T 1j11 T 1j11 T 1j11 mfor a sequence of 1-step forecasts, from T, T 11, . . .

jwhen, at T, m undergoes a step-change to m*. In the 5 2 a(I 1 b9a) d ,n m

absence of the break:
pwhere (I 1b9a) →0 as p→`, so that for forecastnw 5 k 1 Gw 1 nT 11 T T 11 origins sufficiently long after the break has occurred,

the DVAR forecasts are unbiased for changes in m.5 w 1 G 1 a(b9w 2 m) 1 n ,T T T 11

Forecasts from the VEqCM with origin T are given
but otherwise: by:

*w 5 w 1 g 1 a(b9w 2 m 2 d ) 1 nT 11 T T m T 11 ŵ 5 w 1 g 1 a(b9w 2 m),T 11 T T

5 w 2 ad , (25)T 11 m so from (25) the 1-step ahead VEqCM forecast error
is:where:

ˆ*E[w 2 w ] 5 2 ad ,d 5 m* 2 m. T 11 T 11 mm

the same as for the DVAR. This is because the originRecall that the DVAR forecast is defined by:
T is before the break has occurred (between T andw̃ 5 w 1 g,T 11 T T 11).

The VEqCM forecast from origin T 11 is given by:so the 1-step ahead DVAR forecast error is:

* ˆE[w 2 w ] 5 2 ad * *w 5 w 1 g 1 a(b9w 2 m),T 11 T 11 m T 12 T 11 T 11

while:since E[b9w 2m]50. Thus the DVAR forecasts areT

biased. * * *w 5 w 1 g 1 a(b9w 2 m 2 d ) 1 n .T 12 T 11 T 11 m T 12Moving the forecast origin forward one period to
T 11: Thus the 1-step ahead VEqCM forecast error is:

ˆ*˜ * E[w 2 w ] 5 2 ad ,w 5 w 1 g, T 12 T 12 mT 12 T 11

and the actual value of the process is: and in general, for 1-step forecasts:

* * * ˆw 5 w 1 g 1 a(b9w 2 m 2 d ) 1 n . *E[w 2 w ] 5 2 ad ,T 12 T 11 T 11 m T 12 T 1j11 T 1j11 m

independently of the origin (T 1j). That is, theThus:
VEqCM forecast bias is unaffected by the period of* ˜ *E[w 2 w 5 aE[b9w 2 m 2 d ].T 12 T 12 T 11 m disequilibrium adjustment.

*Substituting for w from (25) yields:T 11

* ˜E[w 2 w ] 5 a(I 1 b9a)d ].T 12 T 12 n m References
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